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SUMMARY

A numerical strategy, based on an adaptive finite element method, is proposed for the direct two-
dimensional simulation of the expansion of small clusters of gas bubbles within a Newtonian liquid
matrix. The velocity and pressure fields in the liquid are first defined through the Stokes equations and are
subsequently extended to the gas bubbles. The liquid–gas coupling is imposed through the stress exerted on
the liquid by gas pressure (ruled by an ideal gas law) and by surface tension. A level set method, combined
with a mesh adaptation technique, is used to track liquid–gas interfaces. Many numerical simulations are
presented. The single bubble case allows to compare the simulations to an analytical model. Simulations
of the expansion of small clusters are then presented showing the interaction and evolution of the gas
bubbles to an equilibrium state, involving topological rearrangements induced by Plateau’s rule. Copyright
q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The study of gas bubbles embedded into a liquid matrix is of great theoretical and industrial
interest, at the crossroads of engineering, physics and mathematics [1, 2]. The equilibrium con-
figuration of a bubble cluster is governed by surface tension through two laws: Laplace’s law,
which relates the curvature of the interface to the pressure difference inside and outside; Plateau’s
rule, which states that bubbles can meet only in groups of three, at angles of 120◦. This last rule
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implies a minimal surface area property, leading to instabilities and topological rearrangements into
larger clusters. In the literature, such situations are investigated in the framework of liquid foams
(see [3–5]). Usual approaches for modelling and simulating these phenomena are essentially based
on minimal surface area criteria (see [6, 7]).

The present paper proposes a direct simulation, using a finite element method, of the evolution
of a set of bubbles into a Newtonian fluid. The first difficulty of this approach is the liquid–gas
coupling: the gas is a compressible fluid, having an inner pressure ruled by the ideal gas law,
and exerting a stress on the liquid matrix. When the pressure is not balanced by surface tension
forces (equilibrium is not yet reached), this stress allows for the expansion of the gas (see [8]).
The second difficulty is to obtain a good description of the interfaces: bubbles interact between
themselves and can adopt a wide variety of shapes. Furthermore, the interfaces come very close
to each other during the process. Consequently, if the numerical method is not accurate enough,
numerical diffusion can provoke a purely artificial (numerical) coalescence of bubbles (see Fortin
and Benmoussa [9]). The interface tracking method used in the present work is the level set method
coupled with an adaptive remeshing strategy which is more completely described by Fortin and
Benmoussa [10].

Section 2 of this paper is devoted to the mathematical description of the expansion of a bubble
cluster into a liquid matrix, and to its finite element discretization. In Section 3, the expansion of a
single bubble is studied. The simulations are compared with an analytical model when neglecting
surface tension, and to the Laplace’s law otherwise. Section 4 investigates the expansion of several
bubbles: cases with three, four and nine bubbles allow for the comparison between simulations
and real cluster configurations.

2. MATHEMATICAL FORMULATION

Let us consider a computational domain �, a square of R2, filled with a gaseous part �g embedded
into a Newtonian liquid matrix �m (see Figure 1). The gas and the liquid are assumed to be
immiscible. At the liquid–gas interface, the gas exerts a stress (��− pg)n on the liquid part, where
pg is the gas pressure (Pa), � is the surface tension coefficient (N/m), � is the local curvature
(1/m) and n the unit normal to the interface. Under this gas stress, the liquid flows through the
boundary of �. Consequently, the gas expands and its volume increases while its pressure, which
is governed by an ideal gas law, decreases. The equilibrium state is reached when pg − pext= ��
(Laplace’s law), where pext is the macroscopic stress imposed over ��.

The gaseous domain �g is assumed to be a set of n distinct bubbles �gi :�g= ⋃n
i=1 �gi . For

the moment, the location of each domain �m and �gi is assumed to be known over time. The
numerical strategy used to track these domains is based on a level set method, which allows an
excellent description of moving interfaces. The method requires the whole computational domain
being meshed (not only �m) and the problem must therefore be formulated over all �. For this
reason, the velocity and the pressure fields v and p must be defined over �. Equations governing
these fields are first established in the liquid matrix and then extended to the gaseous domain.

2.1. Conservation and equilibrium equations in the liquid domain

In this work, the liquid matrix is assumed to be an incompressible Newtonian fluid in order to
focus only on surface tension effects and on liquid–gas coupling. The described numerical method
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Figure 1. Expansion of a gas bubble into a liquid matrix.

is however general and has been implemented in order to work equally well with shear-thinning
fluids governed by power or Carreau laws relating the liquid viscosity to the norm of the strain
rate tensor.

The Cauchy stress tensor � in the fluid matrix is defined by �= 2�m�(v) − pI , where
�m is the matrix viscosity. Influence of inertia can be evaluated through the Reynolds number
Re, which is obtained by balancing inertia and the viscosity terms in the momentum equation.
Everitt et al. [11] proposed the following definition for foam systems:

Re= �V 2/3
0 (p0g − pext)

�2m
(1)

where � is the matrix density, V0 the initial bubble volume and p0g the initial gas pressure. This value
is generally very small in typical real 2D foam systems (see also Kern et al. [12]). Consequently,
momentum and mass conservation laws lead to the Stokes equations governing v and p:

∇ · [2�m�(v)] − ∇ p= 0 in �m

∇ · v= 0 in �m

�n= (��I + �gi )n on ��m ∩ ��gi

�n=−pextn on ��m ∩ ��

(2)

where �gi is the Cauchy stress tensor of the i th gas bubble.
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2.2. Conservation and equilibrium equations in a gas bubble

The pressure pgi in the bubble �gi and its volume |�gi | are governed by an ideal gas law which,
at constant temperature, gives:

pgi |�gi | = constanti (3)

In this quasi-static model, the gas pressure is uniform in each bubble. Equation (3) does not
allow to describe the velocity field in the gas. However, the evolution of the volume of a bubble
depends only on the interface velocity. Hence, the velocity field already defined in �m, is extended
to �g in such a way that it does not perturb the interfacial velocity:

v∈C1(�)

∇ · [2�g�(v)]= 0 in �g
(4)

where �g is a (small) numerical parameter. Such an extension corresponds to the addition of a
viscosity term to the gas bubble Cauchy stress tensor: �gi = 2�g�(v)− pgi I . In order to ensure the
consistency of the model, the parameter �g must be chosen small enough so that,

2�g‖�(v)n‖R2� pgi ‖n‖R2 = pgi (5)

on ��gi . Finally, the pressure field, already defined in �m, has also to be extended to �gi . A
natural extension is to set the pressure field p equal to the gas pressure into each bubble as in
Caboussat et al. [13]

p= pgi in �gi (6)

However, the Cauchy stress tensor �gi is not related to the pressure field p, but is directly a
function of pgi , the bubble pressure. Hence, the value of p in �gi does not appear in Equations (2),
and, consequently, can be chosen arbitrarily. This is why, in order to limit the perturbation of the
velocity and pressure fields already defined in �m, p is extended by zero in �g

p= 0 in �g (7)

2.3. Velocity–pressure mixed variational formulation

Let us define the functional spaces V= (H1(�))2 and P= L2(�). The global mixed formulation
is obtained by adding the variational forms of (2), (4) and (7). The weak form of (2) in the liquid
domain is straightforward:

∫
�m

2�m�(v) : �(w)−
∫

�m

p∇ · w=−
∫

��
pextn · w−

∫
��g

��n · w−
n∑

i=1

∫
��gi

�gin · w
∫

�m

q∇ · v= 0

(8)
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∀(w, q) ∈V×P. A similar formulation can be obtained in the gaseous part of the domain from
Equations (4) and (7) ∫

�g

2�g�(v) : �(w)=
n∑

i=1

∫
��gi

(�gin+ pgin) · w
∫

�g

pq = 0

(9)

∀(w, q)∈V×P. In order to avoid dealing with surface integrals, these latter have to be turned into
volume integrals. The divergence theorem can directly be applied to the surface integral involving
the gas pressure. The surface tension term can be rewritten as a volumetric force as in Brackbill
et al. [14] and Béliveau et al. [15]. Assuming the interface ��g is smooth enough, the following
relation takes place in a distributional sense:

∇F =n���g
(10)

where ���g
is the Dirac distribution associated with ��g and F , the characteristic function of �g,

is equal to 1 in �g and vanishes in �m. Relation (10) allows writing∫
��g

��n · w=
∫

�
��∇F · w (11)

To avoid the explicit computation of the local curvature �, the following equality, proved
in [15] is considered:∫

�
��∇F · w=

∫
�

�

(∇F ⊗∇F − |∇F |2 I
|∇F |

)
: ∇w=:

∫
�

�T : ∇w (12)

The second-order tensor �T will impose surface tension forces at the boundary of each gas
bubble. By adding systems (8) and (9) and by taking into account relations (11) and (12), the final
mixed system is:

Find (v, p)∈V×P such that∫
�m

2�m�(v) : �(w)+
∫

�g

2�g�(v) : �(w)−
∫

�m

p∇ · w

=−
∫

��
pextw · n−

∫
�

�T : ∇w+
∫

�
pg∇ · w

−
∫

�m

q∇ · v− �p

∫
�g

p q = 0 ∀(w, q)∈V×P (13)

where the gas pressure pg equals pgi in �gi and vanishes in the liquid matrix �m and �p is a
numerical parameter, which allows to add the last equations of systems (8) and (9), and has the
dimensions of the inverse of a viscosity. In the continuous case (13), �m ∩�g=∅ and the parameter
�p is then arbitrary. However, in the discrete case, for a same given node, the contributions to
the mass matrix can be provided by both liquid and gaseous terms and �p appears therefore as
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a weighting parameter. More precisely, it has to be chosen small enough to ensure mass conservation
in the liquid domain (�p= 10−5 in the presented simulations).

Before discussing the finite element implementation used for solving system (13), some important
points have to be outlined:

• The uniqueness of the solution of (13) is ensured by considering Dirichlet conditions for the
velocity v over a part of the boundary ��. These conditions will be defined in the following
for each considered case.
• The gas pressure field involved in (13) is calculated with n relations of the form (3). The
simulations require the volume of each bubble, and need a special treatment (see Section 4).
• By construction, the velocity and the pressure fields (v, p) solution of (2), (4) and (7), are
also a solution of the weak mixed formulation (13). In turn, if v and p are solutions of (13),
and if the gas boundary is smooth enough, then v and p are also solutions of (2), (4) and
(7) (in a distributional sense) and satisfy the boundary and interface conditions considered
in (2).

In order to use a finite element method for solving system (13), the integrals defined over
�m and �gi have to be turned into integrals defined over �. Such an operation is performed by
considering the characteristic function F of the gaseous domain, and its complementary function
1− F . Multiplying the integrand by F (or (1− F)) will restrict the integral to �g (or �m):∫

�g

f d�=
∫

�
F f d�,

∫
�m

f d�=
∫

�
(1− F) f d�

The second-order (O(h2)) Taylor–Hood finite element (quadratic velocity and linear pressure) is
then used to discretize the resulting mixed formulation. Finally, the finite element implementation
is achieved by computing the characteristic function F of the gaseous part i.e. by computing the
evolution of the bubble position over time.

2.4. Interface capturing

The methodology used to capture the interfaces is described in detail in [10] and is based on a finite
element approach and a level set method. Let us consider a function 	 :�×R+→R describing
the gaseous domain �g. Since �g is convected by the velocity field v, 	 is solution of a pure
advection equation [16]

�	

�t
+ v · ∇	= 0 ∀t>0

	(. , 0)=	0 at t = 0

(14)

Solving such a hyperbolic equation is a difficult numerical task [17], and may involve spurious
oscillations when using standard finite elements. The level set method, developed in [16], avoids
the development of steep gradients by convecting a smooth function 	. More precisely, 	 is the
signed distance function to the interface ��g, which is positive for �g, vanishes over ��g and
is negative for �m. Using this approach, 	∈C1(�) and ‖∇	‖R2 = 1. Equation (14) can then be
solved by a classical SUPG method.
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As in [10], the simulations presented in this paper have been performed by using such a level
set method, with quadratic polynomials for the space discretization of 	 and an implicit Euler
scheme for the time derivative. Note that even though 	0 is initially a signed distance function,
the solution 	 of Equation (14) does not generally conserve this property. Hence, steep gradients
may progressively appear near the interface which becomes irregular. Consequently, after solving
Equation (14), an additional re-initialization step is necessary, which consists in modifying the
solution for obtaining ‖∇	‖R2 = 1, without changing the isovalue zero, i.e. without perturbing the
interface position (see Sussman and Fatemi [18]).

When solving a hyperbolic equation like (14), boundary conditions have to be imposed only
over the inflow part of the boundary ��. Since the velocity field v involved in (14) is the expansion
velocity field, solution of (13), �� is usually an outflow boundary. Consequently, function 	 does
not verify any boundary condition.

In the discrete case, the gas characteristic function F has to be smoothed out and is thus defined
by the following:

F =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if 	��

1

2

(
1− 	

�
− 1



sin

(



	

�

))
if |	|��

1 if 	�− �

(15)

where � is a regularization parameter. Hence, the effective computed interface has a width of 2�.
This smooth form of F allows to consider its gradient, which is used to express the surface tension
tensor T in relation (12): ∇F = (dF/d	)∇	.

To improve the accuracy on the interface location, a mesh adaptation method is used (see
[19, 20]). This method is based on a hierarchical error estimator. It concentrates the mesh elements
in the vicinity of the interfaces and allows to choose very small values of � and thus very thin
interfaces. Hence, a good description of the interfaces is obtained with an acceptable number of
mesh elements.

2.5. Units used in the simulations

Simulation results considered here are given in a dimensionless form. More precisely, let x be the
characteristic length of the computational domain, and let p be the characteristic pressure. The
corresponding characteristic time is t = �m/p, the characteristic velocity is defined by v= x/t .

Let us consider the following decompositions: x = x∗x , y= y∗y, t = t∗t , p= p∗ p, v= v∗v,
�= �∗ p× x where x∗, y∗, t∗, p∗, v∗ and �∗ are dimensionless numbers. For instance, by considering
�m= 1 Pa/s, x = 10−2 m and p= 102 Pa, then t = 10−2 s, v= 1 m/s and �= 1 N/m.

System (13) has been solved by using the dimensionless quantities. Hence, whatever the physical
quantity q considered here, it is always its dimensionless part q∗ which is given. The physical
value of q is then equal to q∗q.

3. DIRECT SIMULATION OF SINGLE BUBBLE EXPANSION

In this rather simple case, an analytical model is developed for the expansion of a single bubble.
This model provides an analytical expression for the radius of a circular gas bubble growing into an
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infinite Newtonian matrix, when neglecting surface tension. Comparisons between this theoretical
model and our simulation will thus be possible allowing to test the efficiency of the presented
approach. Surface tension will then be introduced and its effect on the expansion will be tested.

3.1. Analytical model

Let us consider the growth of a disk of radius R(t), within an infinite matrix of a Newtonian
liquid. Cylindrical co-ordinates (r, �) are used with the origin O chosen at the bubble centre.
The kinematics of the liquid matrix are ideally described by a purely radial velocity field which
depends, as the pressure, only on the r -component: v= (u(r), 0), p= p(r). The initial bubble
radius is denoted by R(0)= R0, with a corresponding area V0 and a bubble pressure p0g. The
incompressibility condition of the liquid leads to the following:

1

r

d

dr
(ru)= 0, r�R (16)

The solution of this first-order differential equation using the condition at the interface u(R)=
dR/dt = Ṙ leads to:

u(r)= ṘR

r
, r�R (17)

Due to the radial symmetry, the momentum balance is described by one single scalar equation

d�rr
dr
+ 1

r
(�rr − ���)= 0 (18)

which is completed with the following appropriate boundary conditions:

�rr (R)=−pg
�rr (+∞)=−pext

(19)

Considering expression (17), the strain rate tensor is of the form:

�(v)= ṘR

r2

(−1 0

0 1

)
(20)

and Equation (18) becomes: dp/dr = 0. Furthermore, Equations (19) and (20) imply that p(+∞)=
pext. The pressure is thus constant in the liquid

p(r)= pext, r>R (21)

Finally, by considering the first condition in Equation (19) and the stress at r = R, the growth
velocity Ṙ can be expressed as

Ṙ

R
= pg − pext

2�m
(22)

This analytical expression is very useful in order to understand the expansion of a bubble, and
the above results require some comments. First, note the absence of shear stress in (20). Second,
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Figure 2. Computational domain for the expansion of a single gas bubble.

since the pressure is constant in the liquid matrix, the liquid–gas interface is a discontinuity surface
(or line in 2D) for the pressure but the normal stress is continuous across this surface when surface
tension is neglected. Furthermore, the local growth velocity, expressed by Equation (22), depends
only on the local pressure difference which also corresponds to the global pressure difference.

In order to solve Equation (22), the gas pressure has to be related to the radius. Three cases can
be distinguished:

Constant gas pressure: pg(t)= p0g and

R(t)= R0 exp

(
(pg − pext)t

2�m

)
(23)

Ideal gas law: pgV = p0gV0, i.e. pg= p0gR
2
0/R

2 and if pext = 0, then

R(t)= R0

[
p0g
pext
+
(
1− p0g

pext

)
exp

(
− pextt

�m

)]1/2
(24)
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Figure 3. Expansion of a gas bubble: interface and first component of the velocity field.

if pext= 0, then

R(t)= R0

(
1+ p0gt

�m

)1/2

(25)

3.2. Numerical results without surface tension

The presented simulations of the expansion of a single bubble have been performed in the config-
uration shown in Figure 2. Symmetry considerations allow for considering only one quarter of the
bubble. Appropriate Dirichlet boundary conditions have therefore been imposed over symmetry
axes: vx = 0 is enforced on {x = 0}, and vy = 0 on {y= 0}, with v= (vx , vy). Surface tension
is neglected (�= 0) and the ambient pressure pext is set equal to zero. Hence, the bubble can
grow indefinitely. The initial bubble pressure is p0g = 0.2, its initial radius is R0= 0.1, the matrix

viscosity �m is equal to 1, and the value of �g is 10−3. These parameters are expressed in the
chosen units.
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Figure 4. Expansion of a disk of initial radius 0.1 into a domain of length 1: (a) bubble radius: comparison
between theory and simulation; and (b) relative error |R − Rh|/R.

Regarding the ideal gas law (3), the bubble pressure is defined by: pb= p0gV0/|�g|, where

|�g| =
∫

�g

1 d�=
∫
{	<0}

1 d�

The gas pressure field, involved in the mixed formulation (13), is then defined by: pg= pbF .
Figure 3 shows the liquid–gas interface superimposed on isovalues of the first component of

the computed velocity, at a fixed time. As expected, the obtained velocity field is characteristic
of an expansion. It reaches its maximal absolute values over the interface, because of the stress
exerted by the gas. Figure 4(a) compares, over time, the radius Rh obtained by simulation with the
one calculated with the analytical expression (25). Figure 4(b) quantifies this study by expressing
the relative error committed on the radius: eh= |R − Rh|/R. Until t � 50, the agreement between
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Figure 5. Expansion of a disk of initial radius 0.1 into a domain of length 10: (a) bubble radius: comparison
between theory and simulation; and (b) relative error |R − Rh|/R.

simulations and theory is quite good, and the relative error is smaller than 4%. Beyond this value,
the error growth seems exponential. The change in the error occurs when the bubble radius reaches
one-third of the computational domain length (here, � is the unit square). These disappointing
results are easily explained by boundary effects. Indeed, the analytical model assumes that the
expansion is taking place in an infinite domain, while the computational domain is finite. This
analysis is validated in Figure 5, which shows that the simulation results obtained by using a
computational domain are 10 times larger than before. As long as the radius is smaller than
one-third of the computational domain length, the agreement between simulation and theory
is excellent.

Finally, Figure 4 shows that mesh adaptation does not perturb the bubble’s expansion. The
mesh used to perform the simulations without adaptation has more than 20 000 elements, while
the different adapted meshes have between 2000 and 5000 elements. Furthermore, simulations
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Figure 6. Expansion of a disk of initial radius 0.1 and initial pressure 0.2, into a domain of length 10,
with surface tension effect: (a) bubble radius evolution; and (b) bubble pressure evolution.

involving a computational domain having a characteristic length of 10, can be carried out only by
using mesh adaptation since the ratio between the computational domain and bubble characteristic
lengths is equal to 100 and the number of mesh elements required without mesh adaptation is too
high.

3.3. Numerical results with surface tension

Expansion of a single bubble is simulated by considering the same configuration and the same
parameters as in Section 3.2, except that surface tension is now taken into account. The surface
tension coefficient � (from Equation (2)) is equal to 10−2. Since pext is still vanishing, the bubble
should grow until the gas pressure pb reaches �/R. Considering the ideal gas law pbR2= p0gR

2
0,
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(a) (b)

Figure 7. Plateau’s rule: (a) topological changes in a four bubble cluster; and
(b) three bubbles at an angle of 120◦.

(a) (b)

(c) (d)

(e) (f)

Figure 8. Expansion of three bubbles: (a) t = 0; (b) t = 1.4; (c) t = 10;
(d) t = 37; (e) t = 284; and (f) t = 824.
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(a) (b)

(c) (d)

(e) (f)

Figure 9. Expansion of three bubbles: meshes: (a) t = 0; (b) t = 1.4; (c) t = 10;
(d) t = 37; (e) t = 284; and (f) t = 824.

the corresponding equilibrium radius is

Req=
p0gR

2
0

�
(26)

Figure 6 presents the results of a simulation performed using a computational domain having
a characteristic length of 10. Since p0g = 0.2 and R0= 0.1, the theoretical equilibrium radius is
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Figure 10. Expansion of three bubbles: velocity field (first stage of the
expansion): (a) t = 1.4; and (b) t = 10.
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(a)

(b)

Figure 11. Plateau’s rule: three bubbles reaching to their equilibrium state: (a) unstable state; and
(b) velocity due to the difference of curvatures.

Req= 0.2, and the associated equilibrium pressure is peq= 5× 10−2. These equilibrium values are
exactly those reached by the simulation. The small oscillations observed in Figure 6 are due to
the change in the time step, which increases over time.

4. DIRECT SIMULATION OF THE EXPANSION OF BUBBLE CLUSTERS

The previous simulations, involving only one bubble, have proved the accuracy of the developed
method for the liquid–gas coupling. They have also validated the approach for the computation
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Figure 12. Expansion of three bubbles: velocity field (last two stages of the
expansion): (a) t = 73; and (b) t = 670.

of the surface tension term. Dealing with a bubble cluster adds another degree of complexity
to the simulations. The bubbles will now interact between themselves and the corresponding
interfaces will get more complicated. Furthermore, due to surface tension effects, the equilibrium
configuration of a bubble cluster satisfy both Laplace’s law ��= pg − pext and Plateau’s rule [2].
This last one states, in a liquid foam framework, that bubbles meet in cluster of three, forming
angles of 120◦. It has to be pointed out that the two different parts composing Plateau’s rule are
important. Firstly, ‘clusters of three’ means that the configuration resulting from the meeting of
four (or more) bubbles is unstable and leads to topological changes to minimize the interfaces.
Such events are depicted in Figure 7(a) for the case involving four bubbles (see [6, 21]). Secondly,
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Figure 13. Expansion of three bubbles: evolution of their volumes.
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Figure 14. Expansion of three bubbles: evolution of the number of mesh elements.

the resulting angles of 120◦ (see Figure 7(b)) are a simple consequence of the equilibrium of
surface tension forces acting over bubble surfaces. This subject will be detailed in the following.

Since the normal stress pext, enforced over the boundary of �, is constant, the pressure within
the liquid domain is constant and equal to pext (see Section 3.1). Hence, at the equilibrium state,
Laplace’s law states that for the i th bubble, pgi −�/Ri = pext. But pgi being uniform in the bubble,
this relation implies that Ri is uniform and the bubble is spherical (or circular) when reaching its
equilibrium state.

To carry out simulations with several bubbles, it is necessary to avoid the ‘numerical’ coalescence
of two neighbouring bubbles which can occur when the mesh is too coarse at the interface between
two bubbles. On a coarse mesh, the computation of the signed distance function 	 giving the
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Figure 15. Expansion of four bubbles: (a) t = 0; (b) t = 7; (c) t = 23;
(d) t = 59; (e) t = 225; and (f) t = 322.

interfaces position can suffer from excessive numerical diffusion leading to an artificial coalescence
of adjacent bubbles. Mesh adaptation plays a major role here. It allows to concentrate the elements
in a very narrow band of width 2� along the interface. In the following computations, � is set equal
to 5× 10−3, compared with an initial bubble characteristic length of 0.1.

The computation of the bubble pressures is an another key point of the cluster simulations.
From Equation (3), it is necessary to compute the volume of each bubble. If a signed distance
function 	i is associated with each bubble �gi , the volume of this bubble is simply given by
|�gi | =

∫
	i<0 1d�. The drawback of this approach is its computational cost since for n bubbles,

n distance functions have to be stored and n advection equations have to be solved. To avoid this
important cost, one single signed distance function 	 is considered and an algorithm is developed
to rebuild the different bubble volumes.

4.1. Algorithm for bubble volume reconstruction

The liquid–gas coupling exposed in the present paper presents similarities with the one devel-
oped by Caboussat et al. [13]. The algorithm proposed here is simpler: one single loop over the
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mesh elements is necessary to number all the bubbles and to determine their volumes. In [13],
the numbering of the gas bubbles requires the solution of a Poisson equation for each bubble.
When the location of a bubble is identified, a loop over the mesh elements enables to compute its
volume.

Let EltVisited be a boolean array of length NbElt, the number of elements of the mesh Th(�),
whose values 0 or 1 correspond to the state of each element: not visited yet or already visited.
The aim of the algorithm is to construct BubbleTracker, an integer array, of length NbElt, whose
values indicate if an element belongs to the liquid (value 0), or to the i th bubble (value i).
Once this array exists, it is very easy to calculate the bubble volumes and the pressure field pg
involved in Equation (13). Hence, ∀K ∈Th(�), ∀x ∈ K , pg|K (x)= F|K (x)pb, where pb is the
pressure of the bubble number BubbleTracker[K ], computed by the ideal gas law (3) (and pb= 0
if BubbleTracker[K ] is equal to zero). This approach could be improved by looking for the bubble
number at quadrature points. However, the algorithm shows good results without this improvement,
which is not considered here. The algorithm is as follows:

begin
integer i ← 0
boolean EltVisited[NbElt]
integer BubbleTracker[NbElt]
while (i < NbElt) {

EltVisited[i] ← 0 \\ Initialization
BubbleTracker[i] ← 0
i ← i + 1

}
Integer NbBubbles← 0 \\ The number of bubbles
i ← 0
while (i < NbElt) {

i f (EltVisited[i]= = 0) {
boolean GaseousElt= IsGas(i)
i f (GaseousElt= = 1) { \\ New bubble

NbBubbles← NbBubbles+ 1
ExploreNewBubble(i,NbBubbles,EltVisited,BubbleTracker)

}
else EltVisited[i] ← 1

}
i ← i + 1

}
end

The function IsGas(i) evaluates the signed distance function 	 over the mesh element i and
returns the value 1 if 	<0 (the element is in the gas) and the value 0 otherwise. The func-
tion ExploreNewBubble(i, NbBubbles,EltVisited, BubbleTracker) explores a new bubble start-
ing from the element i . More precisely, starting from i , this function constructs a new bubble by
adding gradually the neighbours of i , the neighbours of the neighbours, and so on, while 	 is
found negative. For each element K added to the bubble, the function sets EltVisited[K ]= 1 and
BubbleTracker[K ]=NbBubbles.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:73–101
DOI: 10.1002/fld



94 J. BRUCHON ET AL.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0  50  100  150  200  250  300  350

V
o
lu

m
e
 o

f 
b
u
b
b
le

s

Time

Bubble 1

Bubble 2

Bubble 3

Bubble 4

Figure 16. Expansion of four bubbles: evolution of their volumes.

Using this algorithm the number associated with a given bubble can vary from one time step to
the next. That is why an additional task is required to determine the number of the i th bubble at
the previous time step (and then to know what was its previous volume). Since bubble coalescence
or breakup is not allowed, each bubble is simply characterized through the point X located inside
this bubble minimizing 	. For example, the fact that X = (x, y)∈�1 at the time t1 and X ∈�3 at
the time t1 + �t , implies �1(t1)≡�3(t1 + �t), and then

p3(t1 + �t)= p1(t1)|�1(t1)|
|�3(t1 + �t)|

4.2. Expansion of a three bubble cluster

The presented simulation has been carried out by taking pext= 0, p0gi |�0
gi | = 0.0314 and R0

i = R0=
0.1, i = 1, 2, 3. The surface tension coefficient � is equal to 10−2. Moreover, the characteristic
length of the computational domain is equal to 10. The initial bubble centres are: (0.15, 0),
(−0.15,−0.05) and (0.03, 0.25) (see Figure 8(a)). This initial configuration does not respect
the angles of 120◦ between the bubbles. To ensure the uniqueness of the solution of system (13),
Dirichlet boundary conditions must be considered: the velocity field is assumed to vanish at the four
corners of the squared computational domain. This condition is in agreement with expression (17)
of the velocity field: when being far enough from the bubbles, liquid remains at rest. Furthermore,
enforcing boundary conditions in the four corners of the domain (and not only in one corner) avoid
an additional dissymmetry in the system.

The complete evolution of the bubbles and the corresponding meshes are depicted in Figures 8
and 9. By considering the form of the velocity field (Figures 10 and 12), the expansion of the cluster
depicted in Figure 8 can be divided into three different stages. Initially (Figure 8(a)), bubbles have
the same uniform curvature, equal to 1/R0. During the first stage of the expansion (Figure 8(b)),
bubbles interact between themselves, changing their shape and then their local curvature. However,
despite this local curvature change, the surface tension term �� has no significant influence on the
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(a)

(b)

2elbbuB1elbbuB

Bubble 4Bubble 3

Bubble 1 Bubble 2

Bubble 4Bubble 3

Figure 17. Expansion of four bubbles: velocity field (first stage of the expansion): (a) t = 0.75; and (b)
topological rearrangement: rough description of the velocity field at t = 0.75 and induced configuration.

expansion. Hence, the velocity field plotted in Figure 10(a) is similar to the one of an expansion
without surface tension (see [8]). That can be explained by two factors. The first one is the distance
separating the bubble surfaces, which is high enough to limit the effect of a curvature difference.
The second factor is the small contribution of the surface tension term (equal to 0.1 at t = 0) to
the normal stress exerted on the liquid, compared with the one of the gas pressure (equal to 1 at
the beginning). However, note that the gas pressure decreases as 1/R2, while the surface tension
term decreases as 1/R.
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Figure 18. Expansion of four bubbles: velocity field (first and middle stages of the
expansion): (a) t = 7; and (b) t = 37.

During the second stage (Figures 8(c) and (d)), the bubble surfaces are close to each other
and the expansion is affected by the surface tension. Hence, during this period, the velocity field
(Figures 10(b) and 12(a)) shows a special orientation in the centre of the cluster, due to the dif-
ferences between the local curvatures. For interpreting this velocity, let us consider Figure 11(a)
describing the situation. First, by looking at Figure 13, note that the three bubbles have approxi-
matively the same volume, and then the same inner pressure pg, all along their expansion. Since
�1>�2, 1/R1<1/R2, the norm |(pg − �/R1)| of the normal stress exerted by the bubble 1 on the
liquid matrix, is higher than |pg − �/R2|, the norm of the normal stress induced by the bubble 2.
Assuming �2<�3 (as in the simulation), Figure 11(b) gives a rough description of the velocity
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Figure 19. Expansion of four bubbles: evolution of the number of mesh elements.

field resulting from the stress difference: bubble number 2 cannot grow in the direction of bubble
numbers 1 and 3. Furthermore, such a velocity field leads to a decrease of �1 and an increase of
�2: this behaviour is the one observed in Figure 8.

Finally, angles �1, �2 and �3 reach the value of 120◦, with a precision of more or less three
degrees (Figures 8(e) and (f)). This value appears to be an equilibrium value: since the three
bubbles have the same local curvature in the vicinity of the cluster centre, their relative positions
do not evolve any more. Because the pressure in the matrix is uniform (and equal to zero in the
simulation), a bubble should reach a spherical shape at the equilibrium (Laplace’s law). Hence,
during the last period, the angles remain unchanged, but the bubbles tend to recover a spherical
shape. The bubble volume, plotted over the time in Figure 13 shows that the expansion stops at
t = 600, approximately. The velocity field has the form considered in Figure 12(b): the expansion
is stopped, while small curvature differences provide oscillations of the velocity into the cluster.
Note that bubbles of Figure 8(f) have not reached their equilibrium state yet. Their evolution
towards the equilibrium proceeds very slowly.

To conclude, the evolution of the number of elements generated by the mesh adaptation is
plotted in Figure 14. This number is proportional to the length of the bubble boundary.

4.3. Expansion of a four bubble cluster

This simulation has been performed by considering: pext= 0, p0gi |�0
gi | = 0.2 and |�gi | � 0.17,

i = 1, 2, 3, 4. The surface tension coefficient is �= 2× 10−2. The initial configuration, depicted in
Figures 15(a) and 17(b) is a pathological one: the bubbles are identical and are forming a group
of four meeting at angles of 90◦. They are inscribed in a circle of radius 0.5, and spaced by
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(a) (b)

(c) (d)

(e) (f)

Figure 20. Expansion of nine bubbles: (a) t = 0; (b) t = 47; (c) t = 263;
(d) t = 534; (e) t = 800; and (f) t = 839.

a distance of 0.05. As in the previous case, the squared computational domain has a side length
of 10. The velocity field is forced to vanish in its four corners.

Figure 15 shows the expansion of the bubble cluster. Due to the closeness of the interfaces
in the initial configuration, the topological change depicted in Figure 7(a) occurs as soon as the
simulation starts (Figures 15(c) and (d)). The cluster reaches its stable configuration at time t � 100,
forming two groups of three bubbles meeting at angles of 120◦. During this rearrangement, the
bubble volumes become heterogeneous, as it can be seen in Figure 16. Beyond t = 100, the bubbles
continue to grow but remain in this stable configuration. At t = 200, the two larger bubbles reach
their equilibrium size: their expansion is stopped. The two others evolve progressively towards
this same equilibrium size.

The topological rearrangement may be explained by looking at the velocity field. Figure 17
shows that it occurs very soon at the beginning of the simulation. Indeed, at time t = 0.75, the
velocity field is directed outwards bubble number 1, showing that the local curvature of this bubble
is the lowest. Although the four bubbles were considered initially as being identical, numerical
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Figure 21. Expansion of nine bubbles: mesh at t = 839.

approximations in the construction of the signed distance function provide this observed asymme-
try. The configuration resulting from such a velocity field is roughly depicted in Figure 17(b), and
corresponds to the expected topological change. The velocity field keeps the same shape during the
bubble rearrangement (see Figure 18(a)), until bubble number 2 is far enough from bubble number 3.
Then, the velocity field between bubble numbers 1–3 from one side, and between bubbles 2–4
from the other side, is the same as in the three bubble case of Section 4.2, as shown in
Figure 18(b).

The number of elements provided by the mesh adaptation is plotted in Figure 19. It follows
the evolution of the length of interfaces. The first time steps of the simulation are more difficult
from an adaptation standpoint since the mesh has to reach a prescribed accuracy. This explains
the first jump in the number of elements. The second jump, at t � 200, corresponds to a change
in the adaptation parameters.

4.4. Expansion of a nine bubble cluster

Finally, the configuration shown in Figure 20(a) is considered: nine spherical bubbles of radius 0.09
are disposed along a regular grid with a centre-to-centre distance of 0.24. The other parameters
are: pext= 0, p0gi |�0

gi | = 2
 · 10−2 and �= 10−3. Furthermore, as in previous cases, the squared
computational domain has a side length of 10. The velocity field is enforced to vanish in its four
corners.

The evolution of the cluster, obtained by simulation, is shown in Figure 20 at six different
steps of its expansion. The final mesh is presented in Figure 21 showing how the mesh and the
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solution are closely related. Topological changes occur and the Plateau’s rule is clearly respected:
bubbles meet in groups of three, at angles of 120◦. These topological changes are similar to the
one depicted in Figure 15, except that bubbles have a smaller number of degrees of freedom for
moving. For example, the centre bubble cannot have any motion of rotation. Hence, with respect
to the angles of 120◦, bubble surfaces must be curved as in Figure 20. Since the bubbles of
Figure 20(f) are not spherical, the equilibrium state is not yet reached. However, a comparison
between Figures 20(e) and (f) shows that bubbles are slowly recovering their spherical shape,
leading to an increase in the distance separating their surfaces. The simulation has not been carried
out until the equilibrium state is reached, because the process is very slow and its description
requires too thin a mesh for the used numerical method (direct method to solve the linear system).
Regarding the evolution of the cluster, the expected equilibrium configuration should be similar
to the initial one (Figure 20(a)).

5. CONCLUSIONS

A numerical methodology, based on a finite element approach, has been developed for the direct
simulation of small bubble clusters. A velocity–pressure mixed formulation has been established
over the whole computational domain, by extending to the gaseous part, the velocity and the
pressure fields, already defined in the liquid part by Stokes’ equations. The liquid–gas coupling
has been performed through the gas pressure and the surface tension. The gas pressure is uniform
inside each bubble and is related to its volume through an ideal gas law. A level set method,
combined with a mesh adaptation technique, has been used to track the interfaces. Since one
single distance function has been considered to describe all the bubbles, a special algorithm has
been developed to calculate the individual volume of each bubble, which is required for the gas
pressure computation.

The expansion of one single bubble has been investigated. Comparisons with an analytical
model and with the Laplace’s law predictions, have proved the accuracy of the presented approach,
especially for the liquid–gas coupling. These comparisons have revealed the importance of the
boundary effects, occurring if the computational domain characteristic length is not large enough.

The expansion of small bubble clusters (3, 4 and 9 bubbles) has been successfully simulated.
Topological rearrangements occur during the simulations, giving rise to a transient step, in which
different bubble sizes may appear. Finally, an equilibrium state is nearly reached, in which only
three-bubble groups meeting at angles of 120◦ are present, as predicted by Plateau’s rule.

The presented approach allows to combine both the gas compressibility (involved in an expansion
step, for instance) and the minimization of the interfaces, through the action of surface tension.
It makes possible the investigation of the bubble cluster evolution far from the equilibrium state,
as well as near an equilibrium state, through the description of the bubble shapes, of the velocity
field inside the liquid and of the gas pressure.

This work can be improved in many ways. Firstly, by reducing the CPU time of the compu-
tations. Actually, the presented simulations take several days, running on a processor Xeon 2,
4 GHz, with meshes of about 7000 nodes. This high CPU time cost limits the bubble number
to around 10. On a physical viewpoint, gas diffusion could be investigated in order to have a
more realistic expansion step. Taking into account the disjoining pressure could also improve the
physics of the simulation, allowing to obtain equilibrium states in which bubbles are not spherical
any more.
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